

Did My Remedial Amendment Produce All That Methane? strategic Carbon.

Rick Coffin (Strategic Carbon, LLC), James Peale (MFA, Inc.), Tom Boyd (NRL) and Jim Mueller (Provectus Environmental Products, Inc.)

PROBLEM STATEMENT

Methanogens/Archaea produce methane. They are often the dominant microbes in reduced environments. Methanogenesis is a requisite component of conventional anaerobic bioremediation.

If Archaea are not controlled, then *in situ* remedial actions employing conventional (*i.e.*, no active control of Archaea) ERD amendments such as [emulsified] oils/lecithins, lactates/sugars, simple hydrogen release compounds or conventional ISCR reagents can generate excessive amounts of methane. At several sites where these conventional ERD/ISCR remedial amendments have been applied excessive methanogenesis (some yielding effervescent samples as shown below) has been observed, sometimes for many months - even years - after the amendments were applied.

Methane in ecosystems can originate:

Thermogenically from regions of petroleum formation deep within the earth

♦ Via microbial fermentation of indigenous organic carbon and subsequent microbial reduction of carbon dioxide

Via fermentation of an added carbon source, and /or

Via catabolism of contaminant carbon

Hence, the origin of methane is not always clear.

CH4 production >12 months Post EVO (Newman Zone®) Application Source US DOD 2017

WHERE DID ALL THIS METHANE COME FROM?

This question can be answered conclusively using carbon isotope analyses - radiocarbon (Δ^{14} C) and stable carbon (δ^{13} C). When coupled with methane (CH_{4}) and carbon dioxide (CO_{2}) data from groundwater samples the origin of the respired carbon is clearly determined.

For water CO₂, dissolved inorganic carbon can be converted to CO₂ and concentrations determined with a coulometer. For water CH4, the concentration is measured via GC-FID. This combination of both gasses provides an estimate of total degradation by assuming microbial degradation to CO_2 and, when there is active anaerobic degradation, CO_2 is further reduced to CH₄

STUDY LOCATION

Figure 1: An overview of the sample location including; A) location of the dry cleaning facility; B) location of the monitoring wells including the sample wells reviewed in this study (purple triangles); C) distribution of sewer lines, storm water drains and utilities below ground in the study area.

CONCLUSIONS

These data show with strong certainty two distinct sources of CH₄ at MW15-1D and MW16-1D (Figure 1). This statement is based on the following points. $1.\Delta^{14}C$ CH₄ and CO₂ data are modern; there is no contribution from petroleum gas or microbial degraded petroleum.

- $2.\delta^{13}$ C CH₄ shows the gas source at both sampling locations is biogenic, produced from organic carbon degradation.
- 3.Data suggested that each source is focused within its region, and there was little mixing of sources between the two wells, approximately 200 ft apart.
- 4.The most modern CH₄ ¹⁴C signature was observed at well MW16-1D and the gas was produced from microbial reduction of CO_2 during the degradation of sewage (very young carbon) and/or subsequent leakage from the sewage lines.
- 5.The ISCR amendment was the primary source of carbon for CH₄ production at MW15-1D.

Provectus Environmental Products, Inc. • 2871 West Forest Road, Suite 2 • Freeport, IL 61032 • Phone (815) 650-2230

Provect-OX®, Provect-IR®, Provect-IR®, ABC-CH4®, Provect-CH4®, EZVI-CH4™, AquaGate®-CH4™, AquaGate®-CH4™, AquaGate®-CH4™, Provect-GS™, ERD-CH4 Ego™ and Provect-ABR™ are trademarks of Provectus Environmental Products Inc. and/or our affiliates

Figure 2: This figure provides an overview of our data interpretation. A) Δ^{14} C and δ^{13} C for CH₄ and CO₂ samples taken at the well locations and discussed in this summary are highlighted in blue. Radiocarbon data are listed as fraction modern and error, carbon age and error [for external reference], and $\Delta^{14}C$ to provide capability to compare these data with other studies. B) Radiocarbon (Δ^{14} C) is compared for CH₄ and CO₂ samples taken from MW-16-1D and MW-15-1D (Figure 1). C) $\Delta^{14}C$ CO₂ and CH₄ data (section B in this figure) are compared with potential endmembers from this study site. Petroleum carbon Δ^{14} C will be -999‰, with no measureable ¹⁴C present. Groundwater CO₂ will be moderately depleted in¹⁴C with a value of -279.81%; this value varies between ecosystems, depending on pavement capping vs gas flux from the atmosphere and plant growth vs. industrial activity. Sewage CH_4 and CO_2 found in the groundwater wells would come from leaking pipelines and Δ^{14} C would be modern, originating from recent carbon production.

For Technical Support and Proposals:

Dr. Rick Coffin, Strategic Carbon, LLC 20 Ladd St., Suite 200, Portsmouth, NH 03801 Phone: (301) 404-2364 rcoffin@strategic-carbonllc.com

DATA INTERPRETATION